https://ijpp.com





Medical Education

Indian Journal of Physiology and Pharmacology



# Desiring the restructuring of physiology laboratories for digital way of teaching: Perceptions of medical teachers in India

Madhuri Taranikanti<sup>1</sup>, Aswin Kumar Mudunuru<sup>1</sup>, Aruna Kumari Yerra<sup>2</sup>, M. Srinivas<sup>3</sup>, Rohith Kumar Guntuka<sup>1</sup>, Akhila Dronamraju<sup>1</sup>, Sai Shriya Taranikanti<sup>4</sup>

Departments of <sup>1</sup>Physiology, <sup>2</sup>Obstetrics and Gynaecology and <sup>3</sup>Pediatric Surgery, ESIC Medical College, Hyderabad, Telangana, <sup>4</sup>III year MBBS Student, Agartala Government Medical College, Agartala, Tripura, India.

#### \*Corresponding author:

Madhuri Taranikanti, Department of Physiology, ESIC Medical College, National Highway 65, Sanjeeva Reddy Nagar, Sanath Nagar, Hyderabad - 500 038, Telangana, India.

#### madhuri.tarani@gmail.com

Received : 12 November 2019 Accepted : 30 December 2020 Published : 27 February 2021

**DOI** 10.25259/IJPP\_35\_2021

Quick Response Code:



# ABSTRACT

**Objectives:** The medical college curriculum in India has not seen a change for the past several years. An initiative has been taken by the Medical Council of India (MCI) in the Graduate Medical Regulation 2018 to bring a uniform change in teaching-learning methods. This change is necessary in all fields of medical education. Restructuring the physiology laboratories to teach practical procedures using digital computerised equipment and techniques could bring about deeper learning. The past several years have made physiology merely imaginative rather than experiential.

**Materials and Methods:** A qualitative study was done using a questionnaire to obtain the perceptions of medical teachers of both genders engaged in teaching medical physiology. Desires and opinions of physiology teachers in changing the way physiology is taught were obtained.

**Results:** Medical teachers felt that a change is necessary to provide better learning experience. More than 80% opined that computerised equipment provide better practical experience with wider understanding of the concepts which students can relate to theoretical concepts. About 85% of teachers supported the move to suggest to MCI on restructuring the laboratories with computerised equipment. More importantly, many teachers expressed that the digital laboratories would make learning very interesting, autonomous and self-directed. The study is not just a platform for opinions but is intended to prompt reflection and bring clarity to the regulatory bodies showing a way forward to change the laboratory setup urgently.

**Conclusion:** Most of the medical teachers in India are finding it appropriate to employ digital ways in teaching Physiology to have better learning outcomes.

Keywords: Restructuring, Curriculum, Physiology, Practical procedures, Digital

# INTRODUCTION

The undergraduate curriculum followed in medical colleges across the country has by and large been uniform for the past several years. An initiative has been taken by the Medical Council of India (MCI) in the Graduate Medical Regulations 2019 to bring a uniform change in the teaching and learning methods. Medical teachers always strive hard to bring in methods to make learning more experiential. Human body provides a wealth of physiological, cognitive and emotional information. This biological data can be converted into an input signal into a computerised system in the form of biosignals from analogue to digital for storage, analysis and retrieval.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. ©2020 Published by Scientific Scholar on behalf of Indian Journal of Physiology and Pharmacology

Using technology in the society has become widespread as also in human biology laboratories such as experimental psychophysiology and other medical domains. Several researchers have strived to provide a platform for deeper understanding and learning human physiological frameworks and refining these models continuously to obtain positive and strong learning outcomes.<sup>[1-4]</sup> It is necessary to take this opportunity of utilising this knowledge of computers to improve and make the study of human physiology interesting and interactive by creating user interfaces that allow the users to communicate with the operating system. It becomes a lot easier for the physiologists to explore the biosignals on a computerised platform. In the recent times, several such e-learning platforms are available, like, simulation and integrative models for understanding various systemic physiological processes.<sup>[5,6]</sup> Several three-dimensional standalone models as teaching tools are available giving the student a good visual experience.<sup>[7]</sup> Simulation laboratories which are mandatory for skills development and training to undergraduate and postgraduate students in a medical college are also incorporating modules on teaching basics before the case scenarios and complex surgical techniques are taught. Physiology simulation modules for teaching have been well accepted by the medical students in some parts of the country.<sup>[8]</sup> However, experiencing real-time computerised measurement techniques would convert the theoretical learning into a practical experience which would stay in the memory traces of the student on which further knowledge can be built. Medical schools in India are still using the conventional methods for teaching and learning human physiology. While it is necessary to understand the conventional methods of experimental procedures, there is also a necessity for the medical fraternity to explore the recent techniques of experimentation and teaching in the subject to their students. The MCI in the Minimum Standards of Requirement (MSR) has given the opportunity to all medical colleges to adopt and replace the conventional equipment with the computerised models in their laboratories for teaching physiology. However, since, it has not made it mandatory, several institutions have not acquired the computerised systems for this purpose. Physiology teachers have no option but to continue to teach physiology in an abstract manner. Furthermore, due to the strict animal ethics guidelines, it has also become difficult and nearly impossible to perform the conventional experiments to demonstrate to the students about the physiological processes. It is proper to say here that most of the human physiology is learnt in the laboratory. Due to the non-availability of such resources, neither conventional nor computerised in most of the medical colleges in India barring a few, the student is left to imagine most of the physiology that has not only made learning difficult but also given way to lose interest in the subject. Good knowledge of human physiology is no doubt a

necessity for the students to become competent doctors with critical analysis and good diagnosing abilities.

The study would also help the authorities such as the managements of medical colleges and medical council to take appropriate steps to introduce such techniques for teaching, learning and assessment of medical students.

## MATERIALS AND METHODS

A questionnaire was designed with items framed so as to obtain information on usefulness of computerised systems, their potential benefits including ease of handling, accuracy over the traditional equipment, perceptions about improved learning experience, scope of creating interest among the students, using such techniques for better engagement in the subject and requirement to continue with traditional methods of teaching practical physiology. Questions were framed to obtain information about their knowledge regarding the amendments in MCI and attitude toward replacement of traditional with computer-based systems for practical procedures in physiology. The questionnaire was then made into an online form and was first administered to a test group to check for internal consistency. A link for the online questionnaire was then released to several physiologists across the states of Andhra Pradesh, Telangana and few neighbouring states. A total of 119 physiologists of both sexes responded to the online questionnaire. Participation was totally voluntary and responding to the online questionnaire was assumed as having consented to take part in the study which was clearly mentioned at the beginning of the online form. The institute's ethics committee permission was obtained.

# RESULTS

The responses were segregated and analysed using percentages and by applying non-parametric tests to find the significant differences between the early career (EC), midcareer (MC) and senior faculty (SF) groups on agreement or disagreement on the questions. The results were tabulated. A total of 119 physiologists participated in the study. The proportion of participants belonging to MC with experience between 6 years and 15 years was more (47.06%) than the EC (29.41%) and SF (23.53%) [Table 1].

The EC group included postgraduates, tutors and assistant professors who had up to 5 years of teaching experience. The MC faculty was those whose experience ranged between 6 years and 15 years and SF had more than 15 years of experience [Table 2].

The responses to the questions were grouped into three categories of positive, neutral and negative responses expressed in numbers and percentages, as shown in [Table 3].

The questionnaire was validated by estimating Cronbach's alpha using Microsoft Excel software and found the internal consistency to be good (Alpha = 0.718123). As all the items in the questionnaire are unidirectional toward knowing the need to restructure the laboratory teaching in physiology in the digital way, the items were not separately analysed against their responses by the three groups. Rather, responses to all the items were analysed between the EC, MC and SF groups. Responses were ranked as 5 - strongly agree, 4 - agree, 3 - neutral, 2 - disagree and 1 - strongly disagree for further analysis. GraphPad Prism software version 9.0.0 (121) was used for statistical analysis. Using Dunn's multiple comparison tests and Friedman non-parametric test, it was observed that there are significant differences between the groups. There is a significant difference in the agreement and in being neutral on all the questionnaire items between the groups, but no such difference is present in the disagreement on all the items. Even though all the groups showed more of agreement on all the items, most significant (P < 0.0001) difference was found between MC and SF groups on agreement, MC group agreeing more compared to SF and EC. Similarly, Dunn's multiple comparisons test showed that the MC and SF groups significantly differ in their neutral responses (P = 0.0004) [Table 4].

Further, Friedman test was performed as an equivalent to one-way ANOVA test on the agreement, disagreement and neutral responses between the three groups to all the items in the questionnaire. The results showed that the means of the responses between the three groups were significantly different in their agreement (P < 0.0001) on the questionnaire and not significant in the disagreement (P = 0.1005) [Table 5].

| Table 1: Stratification of physiologists as per years of experience. |                         |                                                        |  |
|----------------------------------------------------------------------|-------------------------|--------------------------------------------------------|--|
| Experience in years                                                  | Number of physiologists | Percentage of physiologists as per years of experience |  |
| 0-5                                                                  | 35                      | 29.41                                                  |  |
| 6-10                                                                 | 29                      | 24.37                                                  |  |
| 11-15                                                                | 27                      | 22.69                                                  |  |
| 16-20                                                                | 17                      | 14.29                                                  |  |
| 21 and above                                                         | 11                      | 9.24                                                   |  |
| Total                                                                | 119                     |                                                        |  |

Table 2: Stratification of physiologists as per experience and cadres.

#### DISCUSSION

Physiology experiments for undergraduates using frogs in the amphibian laboratory were performed till two decades ago wherein every student would dissect the frogs and perform the nerve, muscle and heart experiments. In the recent times, the availability of digital modules with user-friendly software is making it possible for the students to replicate the nervemuscle experimental findings on their own bodies and have the feel of learning. Many faculty workshops felt that experiencing the stimulus and response on their own nerve and muscle gave them a better learning experience which the student would surely recall and apply this experience while learning the subject. About 72% (72.27%) of the participants of the study felt that computer-assisted learning was a good alternative to traditional learning for physiology practical procedures. This is mainly because use of animals in physiology has taken a downtrend in the recent years due to ethical concerns. As a result, the faculty is left with no other option but to simply give a visual projection of the nerve muscle graphs that include a one-way teaching method leaving a lot to the imagination of the student.<sup>[9]</sup> Several faculties are looking for alternatives to make the teaching-learning experience more productive and fruitful. Studies in the past have shown that students perceive learning physiology as difficult, comparing it with difficult puzzles that need to be solved or making disproportionate efforts to learn the subject.<sup>[10]</sup> About 84% (84.87%) of the participants of the study recommended replacing the conventional equipment with newer computer simulators. A similar proportion of teachers felt that muscle experiments done on humans provide similar or better learning experience than traditional amphibian experiments. However, they were about 58% (57.98%) of the teachers who did feel that the traditional system should continue for teaching physiology practical classes. This group of teachers mainly belonged to the senior cadres of professors and associate professor who probably had the experience of performing such experiments on animals in the earlier days and, hence, felt the need to continue along with the newer methods. This is justified given the fact that knowledge of traditional methods lays the foundation and helps one to understand the modern equipment. Furthermore, there could be a proportion of faculty who is computer illiterate and not acquainted with

| Table 2. Stratification o | i pilysiologists a | s per experience an     | d cadres.                |                           |                           |                                  |
|---------------------------|--------------------|-------------------------|--------------------------|---------------------------|---------------------------|----------------------------------|
| Cadres                    | Number             | Experience<br>0-5 years | Experience<br>6-10 years | Experience<br>11–15 years | Experience<br>16–20 years | Experience<br>21 years and above |
| Professor                 | 39                 | Nil                     | 1                        | 16                        | 13                        | 9                                |
| Associate professor       | 24                 | Nil                     | 13                       | 7                         | 4                         | Nil                              |
| Assistant professor       | 38                 | 17                      | 15                       | 4                         | Nil                       | 2                                |
| Tutor                     | 10                 | 10                      | Nil                      | Nil                       | Nil                       | Nil                              |
| Postgraduate              | 8                  | 8                       | Nil                      | Nil                       | Nil                       | Nil                              |
| Total                     | 119                | 35                      | 29                       | 27                        | 17                        | 11                               |

| Table 3: Responses to questionnaire items: Grouped into three categories of positive, neutral and negative responses.                                                                                              |                                                           |                  |                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|-----------------------------------------------------------------|--|
| Questions                                                                                                                                                                                                          | Positive responses<br>(strongly agree and<br>agree) n (%) | Neutral<br>n (%) | Negative responses<br>(disagree and strongly<br>disagree) n (%) |  |
| Computer-assisted learning is a good alternative to traditional learning for physiology practical                                                                                                                  | 85 (71.42)                                                | 23 (19.33)       | 10 (8.4)                                                        |  |
| It is necessary to continue to teach the traditional methods of practical in physiology                                                                                                                            | 69 (57.98)                                                | 21 (17.65)       | 29 (24.37)                                                      |  |
| It is advisable to replace the kymographs with computer-based<br>learning software and systems                                                                                                                     | 101 (84.87)                                               | 10 (8.4)         | 8 (6.72)                                                        |  |
| In electrophysiology nerve muscle experiments done on humans<br>provide similar or better learning experience than traditional<br>amphibian experiments                                                            | 99 (83.19)                                                | 13 (10.92)       | 7 (5.88)                                                        |  |
| Digital/computer-based experiments provide a wider scope of<br>understanding physiology by the student in various fields of nerve<br>muscle, cardiovascular, respiratory and psychophysiology                      | 106 (89.08)                                               | 8 (6.72)         | 5 (4.2)                                                         |  |
| Experiencing the stimulus response by student can make the practical experience to students more understandable                                                                                                    | 110 (92.44)                                               | 6 (5.04)         | 3 (2.52)                                                        |  |
| Students enjoy the learning by making the subject more interesting to<br>them through such advanced methods                                                                                                        | 111 (93.28)                                               | 5 (4.2)          | 3 (2.52)                                                        |  |
| Traditional instruments should still be used for demonstration purpose and should be a part of history of medicine                                                                                                 | 89 (74.8)                                                 | 15 (12.61)       | 15 (12.61)                                                      |  |
| Availability of the digital computer systems would enable<br>postgraduates and faculty to involve in research activities in a more<br>objective manner                                                             | 111 (93.28)                                               | 6 (5.04)         | 2 (1.68)                                                        |  |
| Would you support the move to suggest MCI to replace the traditional kymographs with computer based experiments in physiology                                                                                      | 102 (85.71)                                               | 11 (9.24)        | 6 (5.04)                                                        |  |
| MCI should consider replacing the conventional methods with computer-based systems for teaching physiology in the laboratory?                                                                                      | 99 (83.19)                                                | 13 (10.92)       | 7 (5.88)                                                        |  |
| Students are technology savvy and would learn better and grasp<br>the subject more if allowed to use the computer based systems for<br>learning physiology in the laboratory                                       | 98 (82.35)                                                | 14 (11.76)       | 7 (5.88)                                                        |  |
| Computer-based systems are easier to use and results obtained are<br>more precise than traditional mechanical devices                                                                                              | 98 (82.35)                                                | 15 (12.61)       | 6 (5.04)                                                        |  |
| Are you aware that the MCI, minimum standards of requirement has<br>given the option of replacing the conventional animal experiments<br>with computer based systems for teaching physiology in the<br>laboratory? | Yes<br>80 (67.23)                                         | No<br>39 (32.77) |                                                                 |  |
| MCI: Medical Council of India.                                                                                                                                                                                     |                                                           |                  |                                                                 |  |

**Table 4:** Groups' responses on agreement, disagreement and being neutral to all the items.

| Dunn's multiple comparisons test   | Adjusted<br><i>P</i> value | Significant |
|------------------------------------|----------------------------|-------------|
| MC agree versus EC agree           | 0.0065                     | Yes         |
| MC agree versus SF agree           | < 0.0001                   | Yes         |
| MC neutral versus EC neutral       | 0.6536                     | No          |
| MC neutral versus SF neutral       | 0.0004                     | Yes         |
| MC disagree versus EC disagree     | 0.1551                     | No          |
| MC disagree versus SF disagree     | 0.1551                     | No          |
| MC. Mid caroor EC. Farly caroor SE | Conjor focul               | ta          |

MC: Mid-career, EC: Early career, SF: Senior faculty.

the computer software and is resistant to use such electronic resources for teaching. About 83% of the physiologists

(83.19%) felt that doing human nerve-muscle experiments in digital physiology laboratories give similar or better learning experience compared to doing traditional amphibian experiments. This shows that many faculties have experienced these procedures on themselves probably through workshops and demonstrations and felt that first-hand experience of the stimulus response leads to better learning outcomes than even the traditional methods done on frogs. A small percentage of about 11% gave a neutral response (10.92%) and another small percentage of about 6% (5.88%) gave a negative response. These participants probably did not get an opportunity of a hands-on experience of the electrophysiology equipment. About 89% (89.08%) felt that digital/computerbased experiments provide a wider scope of understanding physiology by the student in various fields of nerve-muscle,

| Table 5: Friedman test results for the agree, disagree and neutral responses between the groups.Friedman testAgreeNeutralDisagreeP value<0.00010.00010.1005P value summary*******Not significantAre means significantly different? (P<0.05)YesYesNoNumber of groups333Friedman statistic22.6217.644.596Data summary333Number of treatments (columns/groups)333Number of items (rows)131313 |                                                        |                               |                   |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|-------------------|-----------------------|
| Friedman testAgreeNeutralDisagreeP value<0.0001                                                                                                                                                                                                                                                                                                                                            | Table 5: Friedman test results for the agree, disagree | and neutral responses between | the three groups. |                       |
| P value<0.00010.00010.1005P value summary********Not significantAre means significantly different? (P<0.05)                                                                                                                                                                                                                                                                                | Friedman test                                          | Agree                         | Neutral           | Disagree              |
| P value summaryYesYesNoAre means significantly different? (P<0.05)                                                                                                                                                                                                                                                                                                                         | P value                                                | <0.0001<br>****               | 0.0001            | 0.1005                |
| Number of groups333Friedman statistic22.6217.644.596Data summary777Number of treatments (columns/groups)333Number of items (rows)131313                                                                                                                                                                                                                                                    | Are means significantly different? ( <i>P</i> <0.05)   | Yes                           | Yes               | Not significant<br>No |
| Friedman statistic22.6217.644.596Data summary333Number of treatments (columns/groups)333Number of items (rows)131313                                                                                                                                                                                                                                                                       | Number of groups                                       | 3                             | 3                 | 3                     |
| Number of treatments (columns/groups)333Number of items (rows)131313                                                                                                                                                                                                                                                                                                                       | Friedman statistic                                     | 22.62                         | 17.64             | 4.596                 |
| Number of items (rows)         13         13         13                                                                                                                                                                                                                                                                                                                                    | Number of treatments (columns/groups)                  | 3                             | 3                 | 3                     |
|                                                                                                                                                                                                                                                                                                                                                                                            | Number of items (rows)                                 | 13                            | 13                | 13                    |

cardiovascular, respiratory and psychophysiology. A varied experience is provided to the student using computerised platforms wherein different systems can be targeted to obtain the desired learning. Studies on perceptions of students toward using computerised interactive digital platforms have shown that students improved practical competence and were also able to operate these independently.<sup>[11]</sup> About 92% (92.44%) of the faculty expressed their opinion that experiencing the stimulus response by the student can make the practical experience conceptually more understandable. <sup>[11]</sup> Enjoying the learning process is an important attribute for gaining interest in a subject. Enjoyment promotes students' interests, effort and engagement.<sup>[12,13]</sup> The present-day students are technology savvy and can easily manoeuvre the computerised sophisticated equipment with ease and would get more involved in the subject that would promote deeper learning, critical thinking and understanding. Many faculties, about 93% (93.28%) also felt that by making the subject more interesting to them through such advanced methods would make learning more enjoyable. A good proportion of faculty of about 74% (74.8%) did feel that the conventional equipment should be a part of the History of Medicine probably due to the emotional attachment associated with these techniques during their student days. As such historical perspectives lay the foundation for future changes. About 93% (93.28%) expressed their agreement to the statement that postgraduate and faculty research can become more objective with such computerised instruments available in physiology laboratories. About 82% (82.35%) also felt that computer-based systems are more easier to use and results obtained are more precise than traditional mechanical devices. This view was probably taken in the wake of the experience of having to make cumbersome electrical connections and preparations while using mechanical devices. On the contrary, the use of computerised equipment no doubt would save time, energy and provide accuracy and precision in measurement of several physiological parameters. About 85% (85.71%) were in favour of initiating the move to suggest MCI to replace the traditional kymographs with computer-based experiments in physiology. The faculty clearly is of the opinion that unless MCI makes it mandatory for the medical colleges to procure such equipment, it is nearly impossible to convince

the managements to implement the same. When an attempt was made to know the awareness of the participants regarding the MCI, MSR clause of giving the option of replacing the conventional animal experiments with computer-based systems for teaching physiology in the laboratory, only 67% (67.23%) were aware of such option. It is generally observed that in many medical colleges, barring a few government medical colleges, very few faculty are involved in the process of procurement of equipment for their department and hence are not aware of the MCI, MSR amendments. Active involvement by faculty in every aspect of procurement and usage will surely motivate them to understand and keep themselves updated with the changes made by MCI from time to time.

## CONCLUSION

Overall, the study projects the desire of several faculty to move from the traditional practical methods of teaching physiology to the new and recent computerised methods that would facilitate better teaching-learning outcomes and also motivate students and change their negative perception about the subject to a more positive attitude. A high level of satisfaction and confidence at the teachers end would translate into better learning outcomes. Positive disposition of teachers toward their professional practice causally relates to a positive classroom behaviour motivating students to think and learn in a deeper manner. Hence, it becomes necessary to protect the interests of the teachers for maintaining a strong educational environment in a medical institute.

#### **Practice points**

- Urgent need to restructure the medical physiology laboratories in medical colleges.
- Digitisation of equipment needed for experiential learning.
- Regulatory bodies to become more aware of the changing needs of laboratory setup.
- Active involvement of faculty required to bring about timely need-based changes.
- Satisfaction and confidence among teachers would translate into better learning outcomes.

#### Acknowledgments

- All the physiologists who took part in the study and provided their valuable responses.
- Dean, Professor M. Srinivas, ESIC Medical College, Hyderabad, for support.

#### Declaration of patient consent

Patient's consent not required as there are no patients in this study.

#### Financial support and sponsorship

Nil.

## **Conflicts of interest**

There are no conflicts of interest.

## REFERENCES

- Beard DA, Bassingthwaighte JB, Greene AS. Computational modeling of physiological systems. Physiol Genomics 2005;23:1-3.
- Lemos RR, Epstein M, Herzog W, Wyvill B. A framework for structured modeling of skeletal muscle. Comput Methods Biomech Biomed Engin 2004;7:305-17.
- 3. Modell HI. Helping students make sense of physiological mechanisms: The view from the inside. Adv Physiol Educ 2007;31:186-92.
- 4. Mabotuwana TD, Cheng LK, Pullan AJ. A model of blood flow in the mesenteric arterial system. Biomed Eng Online 2007;6:17.
- 5. Kuebler WM, Mertens M, Pries AR. A twocomponent simulation model to teach respiratory mechanics. Adv Physiol

Educ 2007;31:218-22.

- 6. Abram SR, Hodnett BL, Summers RL, Coleman TG, Hester RL. Quantitative circulatory physiology: An integrative mathematical model of human physiology for medical education. Adv Physiol Educ 2007;31:202-10.
- Wang H, Northrop C, Burgess B, Liberman MC, Merchant SN. Three dimensional virtual model of the human temporal bone: A stand-alone, downloadable teaching tool. Otol Neurotol 2006;27:452-7.
- Dutt RA, Jain R, Bangera S. An integrated simulation-based early clinical exposure module in cardiovascular physiology. Indian J Physiol Pharmacol 2020;64:147-54.
- Hansen LA, Boss GR. Use of live animals in the curricula of U.S. medical schools: Survey results from 2001. Acad Med 2002;77:1147-9.
- Michael J. What makes physiology hard for students to learn? Results of a faculty survey. Adv Physiol Educ 2007;31:34-40.
- 11. Hohenberg G, Reiss G, Ostermann T. An Interactive digital platform for teaching auditory physiology using two classes of electronic basilare membrane models. In: Proceedings of the 9<sup>th</sup> International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016), HEALTHINF. Vol. 5; 2016. p. 189-93.
- 12. Ainley M, Aineley J. Student engagement with science in early adolescence: The contribution of enjoyment to students' continuing interest in learning about science. Contemp Educ Psychol 2011;36:4-12.
- 13. Reyes MR, Brakett MA, Rivers SE, White M, Salovey P. Classroom emotional climate, student engagement and academic achievement. J Educ Psychol 2012;104:700-12.

How to cite this article: Taranikanti M, Mudunuru MK, Yerra AK, Srinivas M, Guntuka RK, Dronamraju A, *et al.* Desiring the restructuring of physiology laboratories for digital way of teaching: Perceptions of medical teachers in India. Indian J Physiol Pharmacol 2020;64(4):309-14.