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Review Article

What determines myonuclear domain size ?
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Abstract

The muscle cell is multinuclear and each nucleus controls transcriptional activity in the surrounding territory
of cytoplasm called myonuclear domain (MND). MND size varies with the fiber type and is inversely proportional
to the muscle fiber oxidative capacity. Change in MND size precedes change in myonuclei count during
post-natal growth and most conditions of muscle fiber hypertrophy, suggesting that the myonuclei have the
ability to enhance their synthetic capacity according to cell size, functional and metabolic needs. MND size
has a “ceiling” limit during hypertrophic process beyond which extra myonuclei are donated by satellite cell
to support further muscle growth. During ageing-related atrophy, myonuclei are not lost but an unequal
distribution is reported. Ageing myonucleus still responds to resistant exercise and hormone replacement
therapy (HRT) by enhancing its transcriptional capacity. Thus the MND size is far from constant and
modulates itself to contribute to the muscle remodeling in various conditions.

Introduction

Skeletal muscle is a highly plastic organ that can
adapt itself in response to altered activity. These
adjustments in response to functional and metabolic
demands elicit qualitative and quantitative changes
in protein metabolism and gene expression that can
result in change in size, functional and metabolic
properties of muscle fibers. A single muscle cell
contains hundreds of nuclei each of which controls
transcriptional activity in its cytoplasmic domain
called myonuclear domain (MND) (1-2). The number
of myonuclei in a muscle fiber and transcriptional
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activity per myonucleus are not constant (3-4) and
are two prime regulators of muscle fiber protein
synthesis and thus, the cross-sectional area (CSA).
Since fiber size is directly proportional to the force
generating capacity under most conditions, so fiber
hypertrophy and atrophy are the key determinants of
changes in muscle strength in health and disease.
A constant MND size has been proposed during
change in fiber size so that hypertrophy is
accompanied by incorporation of new nuclei via
satellite cells (Fig. 1B) while atrophy is related to
nuclei loss via apoptosis (Fig. 1C) (5). However, a
good correlation between fiber CSA and myonuclei
count is not always reported (6-9). For instance,
hypertrophy induced by overload precedes myonuclei
incorporation (10). Similarly, MND size has been
reported to increase with maturational growth
and decrease during ageing (9). Denervation-
induced atrophy was not related to loss of
myonuclei in mouse plantaris (7) and rat diaphragm
(11) muscle.
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Hypertrophy > myonuclear addition
= increased MND size
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Hypertrophy = myonuclear addition
= unchanged MND size

Hypertrophy

Atrophy

atrophy = myonuclei loss
=unchanged MND size

Fig. 1:

Most of the studies for MND size measurement have
been performed on frozen sections from muscles,
where freezing and stretching procedures can
introduce variability in fiber sarcomere length and
CSA (12). Further, altered shape and elongation of
myonuclei may result in over-counting of nuclei from
cross-sections, especially in old age (13). Also, it is
difficult to distinguish myonuclei from satellite cells
without using electron microscope and all these
factors may lead to erroneous measurements of MND
size and myonuclei count in muscle sections. Such

atrophy > myonuclei loss
= decreased MND size

Possible changes in myonuclear domain (MND) size with muscle fiber hypertrophy and atrophy.

problems can be avoided by measuring MND size at
single fiber level at a fixed sarcomere length for
optimal force generation.

Single fiber model also gives us an opportunity to
study positioning of nuclei in three-dimensions which
is important for optimal transport distances across
the fiber, since not all the nuclei are transcriptionally
active for all the at any given time point (14-15).
Modeling studies from mouse single fibers indicate
that the nuclei are not randomly distributed but more
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Fig. 2:

Confocal microscopy images of single muscle fibers from mouse EDL (A) and soleus (

) muscles and from young (

and old (D) human subjects. In mice myonuclei are more orderly placed in the EDL (A) whlle distribution is less ordered
in the soleus (B) muscle fibers. In humans, the regular distribution of myonuclei observed in young age (C) is lost is
old individuals (D). DAPI (blue) stained myonuclei while the rhodamine phalloidin (red) stained actin. Scale bare = 50 pm.

or less evenly placed to minimize the transport
distances (16). The ordered pattern is more prominent
in fast- than slow-twitch muscle fibers (Fig. 2A-B).
Also, the representative nuclei from two fiber types
are different in their phenotype in rodents. While the
myonuclei from fast-twitch fibers are predominantly
elliptical and aligned to long axis of the fiber, nuclei
from slow-twitch fibers have more rounded
appearance. Although some of the nuclei have shapes
varying between the perfectly round and perfectly
elliptical scheme (Fig. 3) (17). These differences are
bit arbitrary in human muscle fibers.

The general purpose of this review is to relate the
MND size with the remodeling of skeletal muscle in
response to change in cell size, functional capacity
and MyHC isoform type.

Effects of fiber type and mitochondrial contents

Myonuclear domain size appears to differ between

fibers expressing different MyHC isoforms i.e. slow-
twitch fibers have smaller MND size than fibers
expressing fast-twitch MyHC isoforms (Fig. 4) (5,
8). This is probably a consequence of higher protein
turnover rate and shorter half-life of slow vs. fast
MyHC isoform (18). Fibers expressing type | MyHC
isoform are highly active in protein synthesis, hence
a demand for higher mRNA transcription and a greater
concentration of myonuclei. Further, MND size is
inversely correlated to the muscle fiber oxidative
capacity and mitochondrial contents (19). Metabolic
demands and the mitochondrial volume density of
muscle fibers are higher in smaller mammals and
decrease with increasing body size (20-21). There is
a dependency on the fiber type too. For instance, in
human muscle, mitochondrial density is higher in
fibers expressing type | MyHC isoform followed by
type lla and lIx fibers (22). However, this pattern is
not observed in small mammals such as rodents,
where the muscle fibers expressing the type lla MyHC
isoform have higher mitochondrial density than the
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Fig. 3:

Confocal microscopy images of myonuclei with various shapes. Scale bar = 3 um.

MyHC Cross- Protein Mitochondrial Myonuclear
Isoform type sectional turnover density Endurance count MND size
area rate
Slow-twitch Small High High High High Small
(Oxidative)
Fast-twitch
(Glycolytic)
Large Low Low Low Low Large
Fig. 4: The properties of the slow- and fast-twitch fiber types. There are exceptions to this general design.

MyHC = Myosin heavy chain.

type | fibers (23-24). We have related this with slightly
smaller or equal MND size in type lla fibers of rodents
compared with type | fibers (17, 25), suggesting that
the mitochondrial proteins beside the MyHC isoform
type play a role in determining MND size. This notion
is further supported by a recent finding that the MND
size is higher in the type lla fibers from superficial
glycolytic region of rat plantaris muscle than the
type lla fibers from deep oxidative region (26).
However, we have recently observed in myostatin
knock-out mice that the MND size was larger in
type lla fibers than in type | fibers although the SDH

staining was deeper in type lla fibers in series cross-
sections (17). This suggests that even the
mitochondrial proteins may not be the prime
determinant of MND size at least in myostatin knock-
out mice.

MND size and Hypertrophy

The skeletal muscle fiber hypertrophy is
characterized by an increase in the size and number
of myofibrils (27). This is achieved by an
enhancement in the muscle fiber transcriptional



Indian J Physiol Pharmacol 2014; 58(1)

activity and protein synthesis (28-29) and the ordered
assembly of newly formed sarcomeric proteins (30-
31). Newly formed nuclei donated by satellite cells,
at least partly, contribute to the increase in
transcriptional capacity (29), as indicated by
hypertrophy of the skeletal muscle linked with
myonuclear accretion in rat (32), cat (33) and humans
(84). This is supported by attenuation (35-36) or
prevention (27, 37) of hypertrophy by ‘gamma
irradiation’ which blocks satellite cell activity.
However, hypertrophy independent of satellite cell
activation has also been reported (38-40). While much
of the emphasis has been given to the nature and
duration of exposure of the hypertrophic stimuli,
muscle specific response should also be considered
since satellite cells from fast- and slow-twitch
muscles have difference in proliferation and
differentiation potentials (41). We have recently
shown that the myofibers from fast- and slow-twitch
muscles respond differently in terms of their MND
size to the same hypertrophic stimulus (17). The
muscle fibers from fast-twitch EDL have lower number
of nuclei to begin with, which are optimally tuned for
force generation. Hence, the addition of new
myonuclei may or may not occur in response to
hypertrophic stimulus depending upon functional
outcome. On the other hand, myonuclei from slow-
twitch soleus muscle fibers can expand their domains
in response to myostatin deficiency or IGF-1 over-
expression without the need for extra myonuclei. This
shows a greater dynamic range of cytoplasmic
expansion and transport distances in slow- than
fast-twitch fibers. It must be noted that, other
hypertrophic stimuli such as overload can lead to
satellite cell activation in soleus muscle (38, 42-43).
Such differences in hypertrophic response may be
attributed to different signaling pathways leading to
hypertrophy. For instance, calcineurin induces
muscle fiber hypertrophy via its affect on satellite
cells stimulation (44-45) and fusion (46). On the other
hand, P13K/Akt pathway spares the satellite cells
(40) and instead, activates anabolic pathway via the
mTOR signaling and inhibits catabolic pathway via
the FOXO transcription factors (47).

Satellite cells are responsible for myonuclear addition
during post-natal muscle growth (48-50). In addition,
their proliferation can be evoked following acute injury
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(51) and in response to muscle overuse and increased
tension (52). During hypertrophy, satellite cell
proliferation and myonuclear addition lag behind
myofiber growth suggesting that the initial phase
of hypertrophy is characterized by enhanced
transcription per myonucleus (53) leading to a slight
expansion of existing MNDs (Fig. 1A) which may
persist up to four weeks (26). This is followed by
fusion of new myonuclei thus re-establishing the
muscle fiber DNA to cytoplasmic volume ratio (Fig.
1B) (32, 43). This phenomenon also supports the
concept of MND “ceiling” (17, 34) discussed later in
this review.

MND size and post-natal muscle growth

Early post-natal muscle growth has been linked with
myonulcear accretion as shown by an increase in
DNA content (54) and myonuclei count (55-56) in
maturing myofibers. New nuclei are provided by the
satellite cells via the proliferation and fusion to the
maturing myofiber. Thus when satellite cells
proliferation is blocked by gamma irradiation (57) or
by hind limb suspension (58) in growth phase, the
normal increase in myonuclei count and fiber CSA
during post-natal muscle growth is attenuated. The
number of satellite cells decreases steadily during
normal growth in rats (59-61) and humans (62-63).
For instance, human satellite cells constitute 15%
of all myonuclei at birth, 6-10% at two years of age,
4% in adults and less than 2% in old age (64). The
decline in number, along with rapid loss of proliferative
capacity of satellite cells with increasing age (65)
explains why the myonuclear incorporation slows
down with maturational muscle growth.

The number of myonuclei can be coupled with
increase in fiber CSA in early growth phase (16).
However, the increase in myonuclei number lags
behind increase in fiber size, resulting in expansion
of MNDs in early post-natal growth. Using single
fibers from mouse EDL, (50) reported a ~5.7 fold
increase in MND size from P7 to P56 which is
consistent with findings from rat diaphragm (49) and
soleus muscle fibers (48). Further, while the protein
turnover rate is lower in fast vs. slow-twitch muscle
fibers (66), a higher level of protein degradation is
described in young than middle age mice (67-68).
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This shows that the myonucleus in early growth
phase probably has higher transcriptional activity than
the ageing myonucleus, to overcome both the higher
protein degradation and expanding cytoplasmic
domain.

MND size and Sarcopenia

Ageing is associated with loss of muscle mass, also
referred to as sarcopenia (69) which is characterized
by both a decrease in muscle fiber number and size.
Further, a reduced adaptability of myonuclei is also
reported as shown by decline in satellite cells density
(4) and proliferation capacity (70). Old age is also
associated with higher level of protein degradation in
muscles (67-68) which might require greater amount
of genetic machinery to synthesize proteins. The
number of myonuclei and the size of MND would be
critical if the quality of myonuclei is compromised
as suggested by lower translational capacity in old
age (3, 71). An increased (4) or unchanged (72)
myonuclei number has been reported with ageing in
human muscle. The same observation of an increased
(10, 73) or unchanged (74-75) myonuclei count has
been reported in old rats as well. These discrepancies
may be partly explained by the nuclear aggregate
formation and altered morphology observed in ageing
muscle fibers (Fig. 1D) (13, 16, 76). Further,
information from human muscle cross-sections were
not corrected for fiber-types (4, 77) which may give
rise to erroneous conclusions since slow-twitch
muscle fibers have smaller MND size than fast-twitch
fibers (5, 8) along with an ageing-related fiber-type
transition (78) and a preferential atrophy of type Il
fibers (79).

We have reported in the human single muscle fibers
that the myonuclei respond to ageing process in a
fiber-type specific manner (76). While the average
MND size in type | fibers was not affected by ageing,
a significant decrease in MND size was observed in
type lla fibers when compared to young individuals.
Such a decrease in type lla fiber MND size is
consistent with previous findings (13) and may reflect
a decrease in myonuclei efficiency to govern a smaller
territory of cytoplasm in atrophied muscle fiber.
Addition of more myonuclei may be a further attempt
to rectify the inefficiency and to keep the transport

Indian J Physiol Pharmacol 2014; 58(1)

distances in check for ageing myonucleus. On the
other hand, type | fibers show an increase in the
CSA and myonuclei count, in agreement with the
weak correlation between size and nuclei count
reported in old age (16). An interesting finding in the
old age is the altered spatial distribution of myonuclei
discussed later in this review.

MND size and therapies for sarcopenia

Resistant exercise and food intake

Physical activity especially resistant exercise has
been acknowledged as a potent natural stimulus to
promote muscle protein anabolism in elderly (80-
82). Current theories also suggest ingestion of amino
acids and/or proteins (83) since protein turnover rate
in skeletal muscle is highly responsive to nutrient
intake (84).

Most training studies in elderly do not report
myonuclear addition in response to resistant training,
thereby suggesting an expansion of the existing
MNDs (34, 85). This is in contrast to young people,
where exercise leads to both an increase in fiber
CSA and myonuclei count (34, 86-87). Thus, the
aging muscle responds to resistant exercise by
primarily increasing protein accretion rather than
myonuclear incorporation, mainly attributed to an
increase in myofibrillar protein synthesis (88-89). The
lack of myonuclear addition may be explained by
small number (90) and proliferative capacity (65) of
satellite cells in elderly. Also, satellite cells become
less responsive to mechanical overload with ageing
in animal models (75, 91-92). Thus, the exercise-
induced senile muscle primarily relies on increased
protein accretion rather than increased genetic
factories to combat ageing-related muscle loss. This
shows that the muscle protein synthetic machinery
maintains the ability to respond to the anabolic
stimuli such as exercise and protein intake, up to
old age. Recently it was shown that the senile muscle
maintains a sort of “memory” from young age where
the nuclei obtained in young age via overload
hypertrophy are not lost during atrophy or ageing
process (93). The author suggests that such a “filling
up” of young muscle with nuclei by exercise may
prove beneficial in old age by facilitating re-growth
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despite long period of inactivity in between. More
research is required to look into interaction of
exercise, nutrition and aging on to the myonuclei,
MND size and especially the myonuclear spatial
organization, since it is the altered spatial distribution
and not the loss of myonuclei, suggested to be more
important biological finding than change in MND size
in old age (76).

Hormone Replacement
menopausal women

Therapy (HRT) in post-

HRT is used by post-menopausal women to counter
menopause related loss of muscle mass and function
(94-95). Most recent studies favor beneficial effects
of HRT on skeletal muscle (96-98). Estrogen is known
to augment satellite cells activation and proliferation
in post-exercise muscle (99) through estrogen-
receptors mediated mechanisms (100). Despite this,
less is known about effects of estrogen on myonuclei
and MND size in skeletal muscle fibers.

Recently, we examined the effects of HRT on
myonuclei in single muscle fibers from post-
menopausal twins discordant for hormone
replacement therapy (101). We report that the effect
on myonuclei is fiber-type specific. While myonuclei
in slow-twitch type | fibers rearrange themselves
leading to smaller MNDs, no effect of HRT was
observed on the mean MND size in the fibers
expressing the type Illa MyHC isoform. This
disagreement may be explained by estrogen’s anti-
oxidant properties (102) and a higher concentration
of its receptors in slow- than fast-twitch fibers (94,
103). Slow-twitch fibers are also transcriptionally
more active (104) and more susceptible to ageing-
related oxidative damage (105) than the fast-twitch
fibers. Estrogen accordingly may reduce MND size
and arrest oxidative damage in slow-twitch fibers to
optimize function and cytosolic transport distances.
These findings may help us devising new strategies
to combat sarcopenia in post-menopausal women.

In the concluding section, we try to discuss a couple
of interesting questions regarding MND size.

Is there a MND ceiling ?

The myonucleus is probably not working at its
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maximum synthetic capacity normally and has the
ability to augment its capacity in response to change
in fiber/MND size. A single bout of resistant exercise
can lead to increased protein synthesis for ~24
hours (106). Further, the initial phase of myofiber
hypertrophy is characterized by enhanced
transcription and translation (53) without addition of
new myonuclei, leading to slight expansion of
existing myonuclear domains. Thus, the existing
myonuclei can support the hypertrophy as long as a
certain “threshold” for transcriptional activity is not
reached (77, 107). Beyond the threshold limit, further
hypertrophy is supported by fusion of new myonuclei
donated by satellite cells (43). For instance,
the hypertrophy beyond ~26% is supported by
myonuclear accretion (32, 87) but not up to ~15%
(108). Using a cluster analysis of 16 weeks resistant
training program on humans (34), a theoretical MND
ceiling size of ~2000 um? was proposed that can
be attained with enhanced protein synthesis
before myonuclear accretion becomes mandatory
to support further hypertrophy. However, this
value is derived from muscle cross-sections and does
not take into account fiber type variations although
MND values vary considerably with fiber types (5,
19, 32).

Recently, using the mice single muscle fibers
we have extended the concept of MND ceiling size
to the hypertrophy with or without functional
compromise (17). Thus, the myonuclei from
hypertrophic fast-twitch EDL fibers can expand
their domains by ~10% without compromising
force-generating capacity. Any further enlargement
of MNDs will result in decrement of force although
hypertrophy may still occur. Based on these
findings, we suggest a MND ceiling size of ~32,000
um2 beyond which myonuclear accretion is a
prerequisite for functional hypertrophy. We also show
that nuclei from slow-twitch muscle fibers have a
bigger dynamic range for domain size without
compromising force or hypertrophy. This shows that
the MND size can be coupled with the force
generating capacity in single muscle fibers. We have
shown before that the MND size scales with body
mass in a variety of mammals (25) which probably
mean that the theoretical MND ceiling size may vary
between species.
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Does distribution matter ?

While much of the emphasis has been given to the
mean MND size in muscle adaptation process, more
attention needs to be given to the distribution across
the cell surface since for instance the mean
myonuclei count may not vary between young and
old age mice (16). Reports from single fibers indicate
that the myonuclei are arranged in a regular
positioning across the muscle fiber perimeter, more
so in fast-twitch EDL than slow-twitch soleus muscle
fibers. (8). Such a pattern of nuclear positioning may
facilitate inter-nuclear communication for regulation
and coordination of protein expressions. The
significance of nuclear positioning can be understood
by the finding that not all the nuclei are active for all
the genes (14) and at the same time (15). Many
factors have a role in determining nuclei positioning
such as desmin and blood vessels (109) and
microtubuli (16). Mice deficient in desmin show
irregularities in placing of nuclei in the muscle fibers
from thigh (110) and EDL muscle (111). Further,
microtubules organization is altered by denervation,
leading to nuclei cluster formation (112). When a
denervated muscle is chronically stimulated for two
weeks, an increase in vascularization is observed
along with myonuclei positioning along the newly
formed blood vessels in muscle fibers (113).

Recently, we reported an ageing-related altered
spatial organization of myonuclei in human single
muscle fibers (Fig. 2D) (76) which is consistent with
findings in mice (16). The denervation-reinnervation
process going on in aging skeletal muscle (114) may
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play a role in it since long term denervation is
associated with altered microtubules organization
(112) and nuclei aggregate formation (115). Such a
pattern of nuclear positioning may impair local protein
turnover in the bare areas of cytoplasm where MND
size is large, leading to increased chances of post-
translational modification and compromised function
of proteins.

In summary we believe that myonuclear domain size
is far from fixed and can vary in the muscle
adaptation process with size, metabolic and functional
demands of the muscle. Muscle nuclei have a
remarkable range of transcriptional capacity but a
“ceiling” exists before the addition of new nuclei is
required to further sustain myofiber hypertrophy. Such
a ceiling value may differ for hypertrophy with or
without functional compromise. Also, more
importance should be given to the qualitative
distribution and not just size of MNDs given that the
size may stay constant, for instance during ageing
process. A better understanding of the topic will help
us formulate future pharmacological interventions
focusing on protein metabolism and stem cell therapy
in the ageing and atrophied muscles to improve
quality of life.
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