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Potential benefits of potassium deposition with periodic fluid
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Abstract

Objective : Fluid redistribution (FR) is an important cornerstone in treating diseases. Findings of FR with
periodic head down tilt (PHDT) had sparked renewed interest in treating electrolyte disturbances. Therefore
this study aimed to determine the potential benefits of potassium (K+) deposition with periodic FR by PHDT
during diminished muscular activity (hypokinesia; HK).

Methods : Studies were conducted on 40-male volunteers. They were equally divided into 4-groups: active
control subjects (ACS), hypokinetic subjects (HKS), periodic fluid redistribution control subjects (PFRCS)
and periodic fluid redistribution hypokinetic subjects (PFRHS).

Results : Muscle K+ increased (p<0.05) and plasma K+ level and K+ losses decreased (p<0.05) in the
PFRHS group compared to the HKS group. By contrast in the HKS group muscle K+ reduced (p<0.05) and
plasma K+ level and K+ losses increased (p<0.05) compared to pre-experimental period levels and the values
of the other groups. In the PFRCS group the muscle K+, plasma K+ concentration and K+ losses were
affected much less than in the PFRHS group.

Conclusion : The current study shows that periodic-applied fluid volume addition into the body’s regional
areas by PHDT increases muscle K+ content and decrease K+ losses suggesting potential benefits of K+

deposition during diminished muscular activity.
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Introduction

Diminished muscular activity (Hypokinesia; HK) is
defined as a condition of physical inactivity beyond

that  assoc ia ted  w i th  da i l y  func t ion ing  and
deconditioning of the skeletomuscular system,
cardiovascular system, kidneys and renal system
and other organs and systems and vessels of
the lower extremities. Diminished muscular activity
leads to the energy catabolism, body weight loss
and reduction of energy production, oxidative
phosphorylation (OP), mitochondrial density and
adenosine triphosphate (ATP) synthesis (1-3).
Diminished muscular activity affects muscle mass,
blood volume and tissue oxygen supply. Deposition
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PFR is defined as periodic fluid shifting into the
regional areas of the body beyond that of daily FR.
PFR is reprogramming skeletomuscular system and
cardiovascular system and kidneys and urinary
system and vessels of the lower half part of the
body and other organs and systems. PFR contributes
to the aerobic respiration, hypervolemia and tissue
perfusion and decreases blood and interstitial fluid
pressure. In addition chronic PFR is a factor of
anabol ism induct ion,  adenosine t r iphosphate
(ATP) synthesis, mitochondria density, oxidative
phosphorylation (OP), glycogen production, tissue
oxygen supplies, aerobic metabolism and cell mass
preservation.

Unpublished data accumulated over 20 years have
shown that chronic PFR has the potential to increase
longevity by 30% to 40% in human population.
Unpublished studies done over many years have
shown that PFR may prevent myocardial infractions
and stroke,  restore insufficiency of kidney and  heart,
widening of coronary arteries, and increase the
left ventricular volume, cardiac output, number of
capillaries, cell mass, muscle mass, bone mass and
repair damaged tissues. PFR may lower interstitial
fluid pressure in different diseases as in solid
malignancies and inflammation as osteoarthritis that
may increase the access to nutrients, oxygen and
drugs.

With periodic shifting of blood and other body fluids
toward the head the brain does not interpret its
elevation of blood supply as excess fluid volume
but rather as simple FR. In response to this
misperception, brain does not signal kidneys and
other organs to lower blood volume and other body
fluids. The systems tend to adapt to PHDT while
fluid volume expands due to periodic fluid shifting
to the head and baroreceptors do not stretched
and do not interpret this as an excess fluid volume,
and do not stimulating the body to urinate so that
excess fluid is eliminated. This process slows
electrolyte losses contr ibut ing to more t issue
electrolytes. Thus, PHDT that moves fluid away from
the lower part of the body into regional areas of the
body may be one solution for maintaining blood
volume, t issues oxygen supply and regulating
electrolyte deposition (20).

o f  such e lec t ro ly tes  as  po tass ium,  sod ium,
magnesium, phosphate and calcium is affected (4-
12). To counteract consequences of diminished
muscular activity different preventive measures have
been used with little success (13-18).

With diminished muscular activity blood and other
body fluids tend to pool into the lower part of the
body. Fluid volume shifting into the legs eventually
leads to fluid volume deficiency within the circulatory
system. Diminished muscular activity is associated
with retention of large fluid volume in the lower part
of the body than what is the norm for the lower
extremities resulting in lower blood volume and
diminished filling with blood of central vascular bed
(19). Because of f luid shif t ing into the lower
extremities more fluid volume migrates into the pelvic
region and the lower half part of the body. Fluid
volume that can fit into venous system of the lower
part of the body may determine the severity of
changes in the delivery of fluid volume to the upper
part of body and thus extracellular and interstitial
fluid volume. Periodic fluid redistribution (PFR)
induced by periodic head down tilt (PHDT) may be
important in regulating electrolytes (20).

The PHDT is not analogous to the head-down tilt
(HDT) (in humans) and hindlimb suspension (in rats)
which are used to simulate weightlessness.  Although
these situations share a significant increase in
thoracic fluid volume there are other factors specific
to PHDT. The biochemical  and physiological
reactions occur progressively during PHDT and not
acutely as in the HDT. With PHDT the biochemical
and physiological reactions are under different control
from that of HDT. The primary mechanisms which
drive fluid volume into the body’s regional areas with
PHDT are different from the mechanisms which shift
fluid volume to the upper part of the body with HDT,
as are many other features specific to PHDT [20].
By contrast to the HDT, with the PHDT fluid volume
is intravascular and intracellular and therefore does
contribute to vascular volume. To differentiate fluid
redistribution (FR) with PHDT from other types of FR
as with the HDT and hindlimb suspension, water
immersion, bed rest, weightlessness, postoperative
and/ or postural manipulations is required specific
knowledge of biochemical and physiological reactions.
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Fluid redistribution with PHDT had shown that it may
improve electrolyte regulation when it is used over
long period of time and at least 8 hrs per day (20).
Therefore to determine the potential benefits of K+

deposition with periodic addition of fluid volume into
the regional areas of the body over long time and at
least 8 hrs per day using PHDT we measured muscle
K+ content, plasma K+ concentration and K+ losses
in health subjects during diminished muscular
activity.

Materials and methods

The studies have conformed to the principles of the
Declaration of Helsinki and the procedures were
reviewed and approved by the Institutional Review
Board. Subjects gave informed consent to take part
in the study after a verbal and written explanation of
risks and methods involved were given. Among the
subjects were no medical problems and none of the
subjects were under any drug therapy which could
have interfered with potassium metabolism. From the
study were not drop-outs. Financial incentives relative
to average monthly earnings were used to encourage
compliance with the protocol of the study. Forty
physically healthy male subjects 24.2±6.3 years of
age were chosen as subjects. All subjects were run
average distances of 10.5±1.6 km.day–1 at a speed
of 10.5±1.3 km.h–1 for three to five years. Subjects
had a body weight of 75.5±8.0 kg and peak oxygen
uptake o f  47.2±7.0  mL.  kg –1.  min–1.  In  p re-
experimental period of 390-days subjects were run
average distances of 10.4±1.4 km.day–1 at a speed
of 10.6±1.3 km.h–1.

Assignment of subjects into four groups was done
randomly and randomization was prepared by
someone independent  f rom the  recru i tment
procedures and treatment of periodic redistribution
of fluid volume and a concealed method was used.

Group 1 : Ten subjects were run average distances
of 10.5±1.5 km.day–1 for 364-days. They were
assigned to the active control subjects (ACS) group.
Group 2 : Ten subjects walked average distances of
3.6±0.5 km.day–1 for 364-days. They were assigned
to the hypokinetic subjects (HKS) group. Group 3:
Ten healthy subjects were run average distances of

10.5±1.8 km.day–1 and were subjected to a –8 to
–12 degrees of PHDT for 8 to 10 hrs per day for 364
days. They were assigned to the periodic fluid
redistribution control subjects (PFRCS) group. Group
4: Ten healthy subjects walked average distances of
3.6±0.8 km.day–1 and were subjected to a -8 to -12
degrees of PHDT for 8 to 10 hrs per day for 364
days. They were assigned to the periodic fluid
redistribution hypokinetic subjects (PFRHS) group.

Protocol

The investigation consisted of a 390-day pre-
experimental period and a 364-day experimental
period. Diets were served as a 7-day menu rotation.
The meals were al l  prepared under standard
conditions in a research kitchen. Mean daily energy
consumption of the metabolic diet was 3530 ± 558,
2915±307, 3580±578 and 3131±360 SD Kcal, and
the mean daily consumption of K+ was 84.3±1.4,
84.4±1.3, 84.2±1.7  and 84.2±1.5 SD mmol for the
ACS, HKS, PFRCS and PFRHS groups, respectively.
The subjects were housed in a facility in which the
temperature, humidity, activities, and dietary intakes
were monitored 24 hrs per day and 7 days per week.

Simulation of diminished muscular activity

To simulate a certain level of hypokinesia the number
of km walking per day was restricted to an average
of 3.6±0.6 km.day–1 and was monitored daily by an
accelerometer. The activities allowed were those
which approximated the normal routines of the
hypokinetic individuals. Subjects were allowed to walk
to the dining rooms, lavator ies and di f ferent
laboratories where the tests were given. Climbing
stairs and other activities which required greater
efforts were not allowed. Subjects were mobile and
were not allowed outside the laboratory grounds so
that the level of diminished muscular activity was
remained relatively constant and easily monitoring.

Simulation of periodic fluid redistribution with periodic
head down tilt

For the simulation of PFR subjects were submitted
to PHDT of -2 to -12 degrees for 8 to 10 hrs per day
during the sleeping period in the pre-experimental
period of 390 days and experimental period of 364
days. In pre-experimental period subjects were
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progressively submitted to PFR by increasing the
level of PHDT to -2, -4, -6, -8- and –12 degrees every
64 to 71 days. Then subjects were submitted to
PHDT of -8 to -12 degrees for about 8 to 10 hours
per day and for the rest pre-experimental period and
actual experimental period. The selection of 390-days
pre-experimental period and the submission of
subjects every 64 to 71 days to the PHDT of -2, -4,
-6, -8 and -12 degrees and their exposure to the
PHDT of -8 to -12 degrees for 364 days period was
established from a preliminary experimentation aiming
to determine the adaptation of subjects to PHDT.
The PHDT of -8 to -12 degrees was changed from
time to time in order to conform to the subjects’
requirements to that position at the time. Individual
d i f ferences of  b iochemical  and physio logical
reactions, that is, renal, hormonal, cardiovascular
and metabolic reactions of the subjects as well as
their clinical manifestations and sensitivity to PHDT
were taken into account. The schedule of PHDT was
alternated from time to time to conform to the
adaptational reactions of subjects.

Blood, urinary and fecal sample collection

To accommodate inter-individual differences in bowel
habits, urine and feces were analyzed daily and were
pooled to form 6-days composites, while blood
samples were assay every 6-day during the pre-
experimental and the experimental period. The 6-
day (consecutive days) pooled samples were
col lected. Blood samples were col lected with
disposable polypropylene syr inges. Fol lowing
overnight fasting for about 8-9 hours, venous samples
of blood were taken at rest and before any meals.
Blood samples were drawn under the same conditions
between 8.00 and 9.00 a.m., without a venous stasis
and after the subjects had been sitting for about 30
min. The sample volume was 7 to 9 mL. To obtain
plasma, blood samples were collected in heparinized
ice-chilled tubes and were centrifuged immediately
at 10.000 x g for 3 min at room temperature and
separated using glass capillary pipettes which were
washed in hydrochloric acid and deionized distilled
water. Immediately after centrifugation plasma
samples were frozen on dry ice and were stored at
-20°C until analyses were conducted for plasma K+.
Twenty four hour urine samples were stored at -4°C

until needed for K+ analysis. To ensure complete
twenty four hour urine collections the creatinine loss
was measured by a colorimetric method using Jaffe’s
reaction. Feces were collected in plastic bags,
weighed and stored at -20 °C for K+ analysis. Fecal
samples were dried-ashed in a muffle furnace at
600°C overnight. Ashed samples were dissolved in
5% nitric acid. To ensure complete feces recovery
polyethylene glycol was used as a marker.

Muscle preparations, potassium extraction and analysis

Muscle biopsies were performed by a percutaneous
needle technique (21) under local anesthesia.
Specimens were taken from the lateral portion of the
quadriceps femoris muscle, 13–20 cm proximal to
the knee. The muscle (mean weight 14.6 mg) was
placed on a piece of quartz glass and with nonmetal
tweezers carefully dissected free from all visible fat
and connective tissue. Traces of blood were wiped
off by rolling the specimens on the piece of quartz
glass. Muscle was then placed on a platinum hook
and dried in an oven at 110°C to constant weight,
extracted in 1 mL of petroleum ether for 2 h and
dried to constant weight and fat-free dry solids (FFDS)
weight was calculated. The potassium extracted from
muscle by treatment with 250 μL 2.5 M HNO

3 
for

twenty-four hour. From each sample, 100 μL of
supernatant was diluted to 10 mL with 0.25% SrCl

2

and analysis of potassium in muscle was performed
by using a Flame Emission Spectrophotometer on a
Perkin-Elmer 320 Model,  Perkin-Elmer Corp.,
Norwalk, CT. The results obtained on muscle
potassium content were calculated in mmol/100 g–1

FFDS.

Potassium measurements

Samples were analyzed in duplicate and appropriate
standards were used for the measurements: The
muscle K+ content, plasma K+ level and K+ loss in
feces and urine was measured by a Flame Emission
Spectrophotometer of a Perkin-Elmer 320 Model,
Perkin-Elmer Corp., Norwalk. CT.

Data analyses

A 2-way interaction [treatment (4 levels) by days (6
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levels)] analysis of variance (ANOVA) was used to
determine whether PFR can affect muscle K+

deposition during HK. The ANOVAs with repeated
measures of 2-way interaction (treatment/days, pre-
experimental/experimental levels, hypokinet ic/
periodic fluid redistribution hypokinetic groups,
hypokinetic/control groups) was used. The ANOVAs
for each time point measurements were used. The
level of significance was set at p<0.05. The results
obtained were reported as mean±SD (Standard
Deviation).

Results

At the initial stages of the investigation the volunteers
who were subjected to PHDT manifested analogous
reactions as those in the HDT position. This is a
consistent reaction to PHDT which is characterized
as adaptational in nature. Then the PFRHS and the
PFRCS groups exhibited some signs and symptoms
typical to PHDT (Table I). However, as the duration
with the treatment of PFR increased and the subjects
were adapted to PHDT all signs and symptoms
disappeared and by the end of the study none of the
subjects  were compla ined of  any s igns and
symptoms. The subjects who were treated with PFR
failed that were much better off physically than before
the treatment and that they have gained energy and
strength and therefore they have decided to continue
the treatment with PFR after completion of the study.

During the pre-experimental period, muscle K+

content, plasma K+ concentration and urinary and
fecal K+ losses were remained relatively stable in
the HKS group and the ACS group (Table 1).  Initially

in the PFRHS group and the PFRCS group muscle
K+ content decreased and plasma K+ level and K+

losses in urine and feces increased; however as the
duration with the PFR treatment increased  muscle
K+ content increased and plasma K+ concentration
and K+ losses in urine and feces decreased (Table

TABLE I : Initial reactions of healthy subjects
to chronic periodic head down tilt.

Puffiness in the face
Tachycardia
Arrhythmias
Loud heart sounds
Tinnitus in the left and more in the right ear
Feeling of fullness (pressure) or stuffiness in the left ear and
more in the right ear
Deep vein symptoms in the left and more in the right leg
Pain in the left and more the right foot
Pain in the upper and the lower parts of the body
Pain in the calcaneal tendon region (Achilles) in the left and
more in the right leg
Pain in the left and more in the right forearm
Cold sensation in the left and more in the right hand

TABLE II : Potassium in Urine and Feces, Plasma Potassium
and Muscle Potassium Measured in the Control and the
Hypokinetic Groups and the Periodic Fluid Redistribution
Control and the Hypokinetic Groups During the Pre-
experimental and the Experimental Period.

Potassium
Experimental
period Urine Feces Plasma Muscle
in days mmol/days mmol/days mmol/L mmol/100/g1

FFDS

Active control subjects (ACS), n=10
Average values
Pre-experimental 74.0±12.0 20.0±2.3 4.18±0.04 34.18±4.40
60th 73.1±11.3 19.5±2.4 4.17±0.05 34.28±3.35
120th 74.0±12.4 19.7±2.2 4.18±0.03 34.42±5.41
180th 73.5±10.5 19.8±2.4 4.17±0.04 34.51±4.37
240th 73.1±11.4 19.3±2.3 4.18±0.03 34.67±5.44
300th 72.3±10.3 18.7±2.5 4.17±0.04 34.75±4.50
364th 73.1±11.5 19.5±2.2 4.18±0.05 34.86±5.43

Hypokinetic subjects (HKS), n=10
Average values
Pre-experimental 73.5±12.4 19.8±3.4 4.18±0.04 34.17±3.43
60th 91.5±10.6*† 25.0±3.3*† 4.50±0.05*† 31.11±4.32*†

120th 90.6±12.3*† 24.3±4.0*† 4.47±0.02*† 31.20±3.40*†

180th 95.7±10.6*† 26.2±5.0*† 4.55±0.03*† 30.41±5.51*†

240th 93.3±12.4*† 25.0±4.3*† 4.51±0.02*† 30.58±4.45*†

300th 106.5±11.5*† 30.1±5.0*† 4.81±0.04*† 28.13±5.30*†

364th 111.0±12.4*† 29.7±4.6*† 4.77±0.03*† 28.18±4.41*†

Periodic fluid redistribution control subjects (PFRCS), n=10
Average values
Pre-experimental 78.0±10.2 21.1±2.0 4.30±0.01 33.75±3.50
60th 76.0±12.0 20.5±2.2 4.23±0.02 34.40±3.50
120th 77.8±10.5 20.8±3.3 4.25±0.03 34.37±5.32
180th 74.3±11.0 19.2±4.4 4.15±0.04 34.81±3.46
240th 75.6±10.6 19.7±3.7 4.17±0.01 34.67±3.50
300th 72.5±13.5 19.0±5.0 4.15±0.05 35.43±3.48
364th 73.3±12.4 19.1±5.6 4.17±0.04 35.34±5.55

Periodic fluid redistribution hypokinetic subjects (PFRHS), n=10
Average values
Pre-experimental 77.7±12.4 20.8±2.4 4.27±0.03 33.80±4.43
60th 67.7±10.6+ 18.0±4.4+ 4.17±0.04+ 34.31±5.32+

120th 68.0±11.3+ 18.3±3.3+ 4.18±0.05+ 34.25±4.40+

180th 66.7±12.4+ 17.0±5.0+ 4.13±0.03+ 34.93±5.52+

240th 67.0±11.3+ 17.5±5.5+ 4.16±0.05+ 34.87±4.36+

300th 63.5±12.0+ 16.3±4.6+ 4.03±0.04+ 36.07±5.46+

364th 64.0±10.6+ 16.7±4.4+ 4.06±0.03+ 36.01±4.41+

FFDS (Fat Free Dry Solids). All values were expressed
as mean±SD.
†P<0.05 significant differences between the pre-experimental
and experimental period values.

*P<0.05 significant differences between the control and
the hypokinetic groups of subjects.
+P<0.05 significant differences between the hypokinetic
and the periodic fluid redistribution hypokinetic groups of
subjects.
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I). With the treatment of PFR K+ is being taken up
for deposition and is being used by the body which
in turn protected the  net muscle K+ content and K+

losses.

In the experimental period muscle K+ content
increased (p<0.05) and plasma K+ concentration and
K+ losses of urine and feces decreased (p<0.05) in
the PFRHS group compared to the HKS group (Table
I). In the PFRHS group with K+ repleted muscle,
plasma K+ concentration and K+ losses in urine and
feces decreased. In the HKS group muscle K+ content
decreased (p<0.05) and plasma K+ concentration and
K+ losses in urine and feces increased (p<0.05)
compared to the pre-experimental period levels
and the values of the other groups (Table I). In the
HKS group with K+ depleted muscle, plasma K+

concentration and K+ losses of urine and feces
increased. In the ACS group muscle K+ content,
plasma K+ concentration and K+ losses in urine and
faces did not change compared to their pre-
experimental values (Table I). The K+ deposition
parameters in the PFRCS group were benefited much
less than in the PFRHS group (Table I).

Discussion

Periodic fluid shifting into regional areas of the body
is a powerful stimulus in the protection and /or
increase of deposition of K+ as was shown by the
significant differences between the PFRHS group and
the other groups. With a long term PHDT and at
least 8 hrs per day muscle K+ content increases
and K+ losses decrease. Clearly PHDT had acted
more as strong stimulus rather than as strong
inh ib i to r  as  the  HDT.  The lower  p lasma K +

concentration suggests higher K+ deposition because
plasma K+ level cannot decrease in K+ repleted
muscle except if K+ is deposited. The decreased K+

losses show K+ regulation because K+ losses cannot
decrease in K+ repleted muscle unless K+ is regulated.
Moreover the decrease of K+ losses during PHDT
suggest that periodic fluid shifting to the head is not
sensed as an excessive fluid volume because
electrolyte excretion cannot decrease with large fluid
volume shifting upwards except if fluid migration to
the head is sensed as simple FR. The higher muscle
K+ content and the lower plasma K+ concentration

and K+ losses with PHDT and the lower muscle K+

content and the higher plasma K+ concentration and
K+ losses without PHDT suggest that they are
probably under different control. Evidently, PFR may
improve and/or increase K+ deposition when it is used
over long time and at least 8 hrs per day. Some
studies (22-27) have shown that f luid volume
expansion with dai ly intake of  f lu id and sal t
supplementation in small divided doses increases
tissue electrolyte content and decrease electrolytes
losses because chronic fluid volume expansion is
not sensed as excessive fluid volume but rather as
simple FR and the excretion mechanisms are not
activated.

The control subjects with and without PFR treatment
fail to show significant differences; this is because
the PFRCS group was physically active which may
have acted more as stressor rather than as stimulus
to PFR. Physical activity may determine the ability
of the body to adapt to fluid volume expansion
because the higher physical activity the lower the
adaptability of the body to fluid volume expansion
(28-32). There fluid volume expansion, is neither
intravascular nor intracellular fluid, and therefore does
not contribute to vascular volume. Some studies (28-
32) have shown that physical activity may not lead
to more fluid volume and tissue electrolytes. Physical
activity which moves fluid to the lower part of the
body may determine the severity in the delivery of
f luid to the upper part of the body and thus
extracellular and interstitial fluid volume. Physical
activity may affect PFR as was shown by minor
changes in K+ deposition in the PFRCS group
compared to the ACS group. Therefore one would
not  observe  the  s ign i f i can t  K + depos i t ion
improvements in the PFRCS group as was shown in
the PFRHS group. Physical activity had played an
important part in K+ deposition protection as was
shown by no changes in muscle K+ content and K+

losses in the ACS group compared to the HKS group.
It should be stated however that PFR even with
physical activity is a powerful stimulus for the
deposition of K+ provided that it is used over longer
period than the time required without physical
activity.

It is evident that periodic fluid shifting to the upper
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part of the body over long period of time and at least
8 hrs per day increases muscle K+ content and
decrease K+ losses. Because muscle K+ content
increases as the treatment with PFR increases
shows that the longer fluid is redistributed periodically
the more K+ is deposited. This indicates a common
conception that PFR over long period of time and at
least 8 hrs per day is important for K+ deposition.
This adds an important contribution to K+ deposition
because people exhibit K+ depletion in response to
the diminished muscular activity (4-12). Periodic fluid
shifting from the lower to the upper part of the body
with PHDT may be more of a stimulus than a stressor
as with HDT. Moreover chronic PFR may improve
body’s ability to regulate fluid volume expansion and
thus interstit ial and extracellular f luid volume.
Consequently PFR over long period of time and at
least 8 hrs per day may affect K+ deposition and
thus musc le  K + content  and K+ losses.  The
mechanisms by which deposition of K+ increase in
response to the PFR over long period of time and at
least 8 hrs per day have not been established yet.
However, the hypokinetic volunteers who were treated
with PFR over long time may have experience a less
labile and more responsive K+ deposition.

Some studies (33-38) have shown that as a
consequence of chronic fluid volume expansion by a
daily intake of fluid and salt supplementation in small
divide doses the brain does not interpret i ts
expansion of blood supply as excessive fluid volume
but rather as simple FR. In response to this
misperception, the brain does not signal the kidneys
and other organs to lower blood volume and other
body fluids. The systems appear to adapt to the
chronic fluid volume expansion and the baroreceptors
do not stretch and do not interpret this as an
excessive fluid volume and do not stimulate the
kidney to urinate so that excess fluid volume is
eliminated. The process contributes to the higher
electrolyte deposition and lower electrolyte losses.
Chronic fluid volume expansion may be one solution
for more electrolyte deposition and less electrolyte
losses (33-38).

The increased muscle K+ may be attributable to many
factors and primarily to the intact cell mass (39).
The fluid volume expansion increases mitochondria

density, adenosine triphosphate (ATP) synthesis,
ox idat ive phosphory la t ion (OP),  and aerobic
metabolism. PFR expands blood volume and tissue
oxygen supply which in turn restores or compensates
cell structure and regulates or improves cell function.
This increases cellular transport and decrease
intracellular electrolytes and preserves and/or
restores cell structure integrity contributing to stability
of cellular contents thereby increasing cell holding
capacity for electrolytes and improving electrolyte
deposition.

The synthesis of ATP and OP are most susceptible
to the blood supply and oxygen delivery to the
tissues. Blood volume expansion and tissue oxygen
delivery normalizes or compensates OP and ATP
synthesis. As blood flow and oxygen tension within
the cell increases, the synthesis of ATP and OP
increases while during diminished muscular activity
OP (40) and ATP synthesis (41) decreases.
Increased mitochondria density and/or function are
considered as the most likely culprit to explain
the synthesis of OP and ATP. Blood volume
expansion is a strong stimulus for the proliferation
of mitochondria enzymes. Mitochondria density and
cytochrome c, which are crucially important in aerobic
energy product ion, increase when during the
d imin ished muscu lar  ac t iv i ty  decrease (42) .
Mitochondria density depends on the duration and
the intensity one can endure fluid volume expansion
procedures and ability of the body to spare total
glycogen. As the synthesis of OP and ATP increase,
cell shifts into aerobic glycolysis which allows the
synthesis of ATP from the breakdown of cellular
glycogen. The production of new glycogen is
stimulated and the glycogen depots are repleted when
during diminished activity the glycogen stores are
depleted (43). With blood volume expansion and
tissue oxygen supplies aerobic metabolism of
glycolysis becomes more efficient than the lower
oxygen-dependent mitochondrial pathways and the
cell function and morphology are preserved or
restored thereby st imulat ing deposit ion of K+

contributing to more muscle K+ content and less K+

losses with PFR during diminished activity.

Conclusion

The PFR with PHDT is a powerful stimulus of
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deposition of K+ as was shown by the differences
between the PFRHS group and the other groups.
The higher muscle K+ content shows  utilization of
K+ because muscle K+ content cannot increase with
diminished muscular activity except if K+ is utilized.
The lower plasma K+ level shows K+ deposition
because plasma K+ level cannot decrease in K+

repleted muscle unless K+ is deposited. The lower
K+ losses show K+ regulation because K+ losses
cannot decrease with large fluid shifting upwards

except if K+ is regulated. It is evident that chronic
PFR increases muscle K+ content and slow K+ losses
suggesting potential benefits for K+ deposition.
However, the underlying mechanism of K+ deposition
with PFR using PHDT has not been established yet.
In conclusion chronic PFR increases muscle K+ level
and slow K+ losses apparently due to a more efficient
K+ deposition. Further research of the potential
benefits of PFR with PHDT on electrolyte deposition
during diminished activity is in order.
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